Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# The ordered hydrocerussite-type structure of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ 

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Received 15 July 2002
Accepted 2 August 2002
Online 31 August 2002
Single crystals of synthetic $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$, bis[lead(II) carbonate] barium difluoride, have been grown under hydrothermal conditions. The compound crystallizes in the ordered hydrocerussite $\left[\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}\right]$ structure and can be derived from a close packing of the metal atoms with a stacking sequence of $\left[c(h)_{2}\right]_{3}$ along the $c$ axis. O and F atoms are situated approximately in the tetrahedral voids, resulting in the formation of a slightly distorted $\left[\mathrm{BaF}_{6} \mathrm{O}_{6}\right]$ icosahedron and a $[1+6+3]$-coordinate Pb atom, with one short bond to F , six bonds to O and three longer bonds to additional O atoms. The carbonate group deviates only slightly from the geometry of an equilateral triangle.

## Comment

In the course of experiments on the synthesis of compounds containing a matlockite-type $[4+4+1]$ coordination of halogen atoms around the divalent metal, which are promising candidates for optical hole-burning or are suitable as host lattices for doping with rare earth ions to synthesize new luminescent materials, the phases $\mathrm{Ba}_{2} \mathrm{~Pb}_{4} \mathrm{~F}_{10} \mathrm{Br}_{2-x} \mathrm{I}_{x}(x=0-2)$ were prepared hydrothermally and characterized by single-crystal structure analysis (Weil \& Kubel, 2000). Experiments to substitute Cl for Br or I , intended to prepare a new $\mathrm{Ba}_{2} \mathrm{~Pb}_{4} \mathrm{~F}_{10} \mathrm{Cl}_{2}$ phase, failed and crystals of composition $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ were formed instead. Structure analysis of this phase revealed a metrical relationship (rhombohedral, unit cell with $a \simeq 5.2 \AA$ and $c \simeq 23.4 \AA$ in hexagonal setting) and a formula similar to the basic lead carbonate, $\left(\mathrm{PbCO}_{3}\right)_{2}$-$\mathrm{Pb}(\mathrm{OH})_{2}$, also known as the mineral hydrocerussite. In its synthetic form, this compound is named 'white lead', a pigment with one of the highest opacities reported, and which has been used since ancient times (Soukup, 1999) and is still employed as a nacreous pigment (Morita, 1985; Franz et al., 1992).

The structure of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ can be derived from a close packing of the metal atoms, with a stacking sequence of $\left[c(h)_{2}\right]_{3}$ along the $c$ axis, according to the Jagodzinski notation (Jagodzinski, 1949; Verma \& Krishna, 1966). In this sequence,


Figure 1
The crystal structure of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ projected along [100], with the layer-stacking sequence of $\left[c(h)_{2}\right]_{3}$ along [001].
two adjacent layers of Pb atoms, forming the $h$ layers, are separated by a layer of Ba atoms, which represent the $c$ layer (Fig. 1). This arrangement leads to a distorted [6+6] icosahedral coordination around the Ba atom, with six shorter bonds to the F atoms and six longer bonds to the corners of the carbonate groups (Fig. 2a). The Pb atom shows a $[1+6+3]$ coordination, with one very short $\mathrm{Pb}-\mathrm{F}$ bond to the vertex of the coordination polyhedron, six chelate-type bonds to the edges of three intra-layer $\mathrm{CO}_{3}$ groups and three longer bonds to the corners of $\mathrm{CO}_{3}$ groups of the adjacent layer (Fig. 2b). The F atoms are approximately situated in the tetrahedral voids of the close-packed arrangement, whereas the O and C atoms are considerably dislocated from the tetrahedral and octahedral voids, respectively. The F atom is surrounded by three Ba atoms and one Pb atom, forming a compressed tetrahedron with a mean angle of $108.6^{\circ}$ (Fig. 2c). The O atom has a coordination number of 4 , with bonds to two Pb atoms, one Ba atom and one C atom. The corresponding coordination polyhedron is a considerably distorted tetrahedron, with a mean angle of $110.6^{\circ}$ (Fig. $2 d$ ).

Recently, the structure of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$ was solved from single-crystal X-ray data (Pluth \& Steele, 2001), as well as from synchrotron X-ray powder data (Martinetto et al., 2002). The main atomic arrangement is similar to that of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$, but in the hydrocerussite structure, one Pb layer is disordered, which corresponds to the Ba layer in the structure of the title compound. The Pb atom is then split


Figure 2
Coordination polyhedra, with anisotropic displacement ellipsoids drawn at the $70 \%$ probability level, for $(a)\left[\mathrm{BaO}_{6} \mathrm{~F}_{6}\right],(b)[\mathrm{PbFO} 9],(c)\left[\mathrm{FBa}_{3} \mathrm{~Pb}\right]$ and $(d)$ $\left[\mathrm{OPb}_{2} \mathrm{BaC}\right]$.
around the $3 a$ site and located on the $18 h$ sites with occupancy factors of $\frac{1}{6}$. The different crystal chemical behaviour of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ and $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$ might be explained by both the lone-pair effect of the $\mathrm{Pb}^{\text {II }}$ atoms and the hydrogen bonding of the OH groups in comparison with the $\mathrm{Ba}^{\mathrm{II}}$ and F atoms, respectively.

Additional crystals of composition $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot M \mathrm{~F}_{2}$ ( $M$ is Ca , Sr or Pb ) have been prepared under similar hydrothermal conditions. They occur as transparent hexagonal plates, with lattice constants of $a=b \simeq 5.20 \AA$ and a stacking disorder along the $c$ axis. Although this reveals a structural analogy between these compounds and $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ or $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$, the corresponding powder diagrams do not indicate a close relationship.

## Experimental

According to the formula of the desired product, $\mathrm{Ba}_{2} \mathrm{~Pb}_{4} \mathrm{~F}_{10} \mathrm{Cl}_{2}$, stoichiometric mixtures of $\mathrm{KF}, \mathrm{KCl}, \mathrm{Ba}(\mathrm{Ac})_{2}$ ( Ac is acetate) and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (all Merck, p.A.) were placed in a Teflon-lined steel autoclave. After filling the reaction chamber with dilute acetic acid (filling degree ca $70 \%$ ) and a reaction time of 20 d at 523 K , colourless single crystals with a hexagonal shape and a maximum diameter of about 0.5 mm had formed. Under these conditions, the acetic acid was oxidized by excess nitric acid [provided by $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ ]. Besides the title compound as the main phase, needle-shaped crystals of $\mathrm{Pb}_{7} \mathrm{~F}_{12} \mathrm{Cl}_{2}$ (Aurivillius, 1976) were also observed. Single-phase $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$ was prepared under similar conditions in demineralized water ( 523 K for 12 d ) from $\mathrm{PbCO}_{3}$ and $\mathrm{BaF}_{2}$ (Riedel de Haën, pure) in a molar ratio of $2: 1$ with addition of small portions of $\mathrm{NH}_{4} \mathrm{Ac}$
(Merck, p.A.). $\mathrm{PbCO}_{3}$ was obtained by precipitation of a $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution with excess $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{CO}_{3}\right)_{2}$ (Merck, p.A.). IR spectroscopic measurements did not indicate any incorporation of water or $\mathrm{OH}^{-}$ into the structure of $\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$.

## Crystal data

$\left(\mathrm{PbCO}_{3}\right)_{2} \cdot \mathrm{BaF}_{2}$
$M_{r}=709.74$
Trigonal, $R \overline{3} m$ $a=5.1865$ (4) A
$c=23.4881$ ( 8 ) $\AA$
$V=547.18$ (6) $\AA^{3}$
$Z=3$
$D_{x}=6.462 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Siemens SMART CCD areadetector diffractometer $\omega$ scans
Absorption correction: numerical
(HABITUS; Herrendorf,
1993-1997)
$T_{\text {min }}=0.013, T_{\text {max }}=0.138$
2535 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.044$
$S=1.34$
237 reflections
19 parameters

| $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0071 P)^{2}\right.$ |
| :--- |
| $\quad \quad+10.9202 P]$ |
| where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$ |

Mo $K \alpha$ radiation
Cell parameters from 2163 reflections
$\theta=2.6-29.0^{\circ}$
$\mu=51.41 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.22 \times 0.13 \times 0.05 \mathrm{~mm}$

237 independent reflections
236 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.069$
$\theta_{\text {max }}=29.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-32 \rightarrow 32$

## inorganic compounds

Table 1
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| $\mathrm{Ba}-\mathrm{O}^{\mathrm{i}}$ | $2.850(5)$ | $\mathrm{Pb}-\mathrm{O}^{\mathrm{ii}}$ | $2.6456(10)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ba}-\mathrm{F}^{\mathrm{ii}}$ | $3.0438(13)$ | $\mathrm{Pb}-\mathrm{O}^{\mathrm{iii}}$ | $3.262(5)$ |
| $\mathrm{Pb}-\mathrm{F}$ | $2.219(7)$ | $\mathrm{C}-\mathrm{O}^{\mathrm{iv}}$ | $1.290(5)$ |

$\mathrm{O}-\mathrm{C}-\mathrm{O}^{\mathrm{iv}} \quad 119.96$ (4)
Symmetry codes: (i) $\frac{1}{3}-x, \frac{2}{3}-y, \frac{2}{3}-z$; (ii) $x-\frac{2}{3}, y-\frac{1}{3}, z-\frac{1}{3}$; (iii) $y-\frac{2}{3},-\frac{1}{3}-x+y, \frac{2}{3}-z$; (iv) $-y, x-y, z$.

Most of the atoms show a distinct anisotropy of the displacement parameters, with significantly smaller $U_{33}$ values than $U_{11}$ and $U_{22}$ values. This behaviour is attributed to the layer structure of this compound, representing a pronounced interaction within one layer and a weaker interation between adjacent layers stacked along [001]. The crystal shape was optimized by minimizing the internal $R$ value of selected reflections $[I>20 \sigma(I)$ ] using the program HABITUS (Herrendorf, 1993-1997). The habit so derived was used for the numerical absorption correction.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1998); software used to prepare material for publication: SHELXL97.

The author thanks Professor E. Zobetz for valuable comments on the manuscript.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1024). Services for accessing these data are described at the back of the journal.

## References

Aurivillius, B. (1976). Chem. Scr. 10, 206-209.
Dowty, E. (1998). ATOMS for Windows. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Franz, K. D., Emmert, R. \& Nitta, K. (1992). Kontakte (Darmstadt), 2, 3-14.
Herrendorf, W. (1993-1997). HABITUS. Universities of Karlsruhe \& Gießen, Germany.
Jagodzinski, H. (1949). Acta Cryst. 2, 201-207
Martinetto, P., Anne, M., Dooryhée, E., Walter, P. \& Tsoucaris, G. (2002). Acta Cryst. C58, i82-i84.
Morita, Y. (1985). J. Chem. Educ. 62, 1072-1074.
Pluth, J. J. \& Steele, I. M. (2001). Personal communication
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Soukup, R. W. (1999). Chemie Konkret in Forum für Unterricht und Didaktik, edited by the GdCh Fachgruppe Chemieunterricht. Weinheim: Wiley-VCH. (In German.)
Verma, A. R. \& Krishna, P. (1966). Polymorphism and Polytypism in Crystals, pp. 83-89. New York: John Wiley \& Sons.
Weil, M. \& Kubel, F. (2000). Z. Anorg. Allg. Chem. 626, 2481-2486.

